Preliminary communication

Polysilane derivatives of the transition metals I. Synthesis of $(Me_3 Si)_3 SiMn(CO)_5$ and related compounds

B.K. NICHOLSON and J. SIMPSON

Department of Chemistry, University of Otago, P.O. Box 56, Dunedin (New Zealand) (Received August 27th, 1971)

Although the preparations of some straight-chain polysilane derivatives of iron¹ and a similar compound of cobalt² have been reported, attempts to synthesise polysilane derivatives of other transition metals have been unsuccessful. Thus King *et al.*¹ were unable to isolate compounds containing silicon-transition metal bonds from salt elimination reactions of chloropentamethyldisilane with the anions $[M(CO)_5]^-$ (M = Mn,Re) and $[M(CO)_3C_5H_5]^-$ (M = Mo,W). We wish to report the preparation of a series of polysilane derivatives of manganese (Me₃Si)_NSiMe_{3-N}Mn(CO)₅ (n = 1-3) by the reaction of dimanganese decacarbonyl with the corresponding silane (eqn. 1)

 $2R_{3}SiH + Mn_{2}(CO)_{10} \xrightarrow{130^{\circ}, \text{ scaled tube}}{36 \text{ h}} 2R_{3}SiMn(CO)_{5} + H_{2}$ $[R_{3}SiH = Me_{3}SiSiMe_{2}H^{3}, (Me_{3}Si)_{2}SiMeH^{4}, (Me_{3}Si)_{3}SiH^{5}]$ (1)

The products were isolated by preparative scale thin layer chromatography (elution with hexane from silica-gel plates) and siloxane impurities were removed by extraction with concentrated sulphuric acid at 0°. Vacuum sublimation gave the products, in $\sim 20\%$ yield, as white waxy crystals. The compounds were stable for long periods in an inert atmosphere but underwent slow hydrolysis on exposure to air.

TA	BL	Æ	1
----	----	---	---

Compound	ν (CO) ^{<i>a</i>} (cm ⁻¹)	Chemical shifts $ au^b$ (ppm)	
Me ₃ SiMn(CO) ₅	2094 s 1993 vs	9.51 ^c	
Me ₃ SiSiMe ₂ Mn(CO) ₅	2092 m 1999 w (sh) 1993 vs	9.83 (Me ₃ Si) 9.54 (Me ₂ Si)	
Me 1			
$(Me_3Si)_2SiMn(CO)_5$	2091 m 1998 vw (sh) 1995 vc	9.78 (Me ₃ Si) 9.57 (MeSi)	
(Me ₃ Si) ₃ SiMn(CO) ₅	2091 m 1998 vs	9.75	

a Hexane solution. b 90% CS₂/10% C₆H₆ solution; TMS as internal standard. ^c 50% solution in cyclohexane⁶.

J. Organometal, Chem., 32 (1971) C29-C30

Satisfactory analyses have been obtained for the compounds, and Table 1 shows the carbonyl absorption frequencies and proton NMR chemical shift data together with those for the corresponding monosilane derivative $Me_3SiMn(CO)_5^6$. Work is now in progress on the preparation of polysilane derivatives of other transition metals, together with investigations of the effect of the presence of silicon atoms β to the transition metal atom on the physical and chemical properties of the silicon-metal bond.

ACKNOWLEDGEMENTS

One of us (B.K.N.) thanks the New Zealand Universities Grants Committee for a Postgraduate Scholarship; financial support from the Research Committee of this organisation is also gratefully acknowledged.

REFERENCES

1 R.B. King, K.H. Pannel, C.R. Bennett and M. Ishaq, J. Organometal Chem., 19 (1969) 327.

- 2 A.G. Mac Diarmid, unpublished results quoted in Ref. 1.
- 3 M. Kumada, M. Ishikawa and S. Maeda, J. Organometal. Chem., 2 (1964) 478.
- 4 B.K. Nicholson and J. Simpson, unpublished work.
- 5 H. Gilman, J.M. Holmes and C.L. Smith, Chem. Ind. (London), (1965) 848.
- 6 A.D. Berry and A.G. MacDiarmid, Inorg. Nucl. Chem. Letters, 5 (1969) 601.

J. Organometal, Chem., 32 (1971) C29-C30